
SCouT: Scalable Coupled Matrix-Tensor
Factorization - Algorithm and Discoveries

ByungSoo Jeon∗, Inah Jeon†, Lee Sael‡ and U Kang∗
∗ Department of Computer Science and Engineering

Seoul National University, Seoul, Korea, 08826
1jbsimdicd@gmail.com

3ukang@snu.ac.kr
† Future IT R&D Lab, LG Electronics, Seoul, Korea, 06763

2june5324@gmail.com
‡ Department of Computer Science

The State University of New York (SUNY) Korea, Incheon, Korea, 21985
4sael@sunnykorea.ac.kr

Abstract—How can we analyze very large real-world tensors
where additional information is coupled with certain modes of
tensors? Coupled matrix-tensor factorization is a useful tool to
simultaneously analyze matrices and a tensor, and has been
used for important applications including collaborative filtering,
multi-way clustering, and link prediction. However, existing single
machine or distributed algorithms for coupled matrix-tensor
factorization do not scale for tensors with billions of elements
in each mode.

In this paper, we propose SCOUT, a large-scale coupled
matrix-tensor factorization algorithm running on the distributed
MAPREDUCE platform. By carefully reorganizing operations,
and reusing intermediate data, SCOUT decomposes up to 100×
larger tensors than existing methods, and shows linear scalability
for order and machines while other methods are limited in
scalability. We also apply SCOUT on real world tensors and
discover interesting hidden patterns like seasonal spike, and
steady attentions for healthy food on Yelp dataset containing
user-business-yearmonth tensor and two coupled matrices.

I. INTRODUCTION

How can we analyze real-world tensors where additional
information is coupled with certain modes of tensors? Many
real-world data are represented as n-dimensional tensors or
multi-dimensional arrays. Some tensors have additional in-
formation related to certain modes of the tensors: e.g., a
3-way movie rating tensor containing (user id, movie id,
time) triples may contain additional information such as meta-
data of movies, and demographics of users. These additional
information helps us find additional hidden concepts. Tensor
and additional information are represented as a coupled matrix-
tensor form: e.g., Figure 2a shows a 3-way rating tensor
containing user-movie-time triples and a coupled movie-genre
matrix, and Figure 2b shows a 3-way rating tensor containing
user-business-time triples and two coupled matrices (friendship
matrix and business-category matrix). A standard tool to ana-
lyze coupled matrices and a tensor is Coupled Matrix-Tensor
Factorization (CMTF). CMTF jointly factorizes matrices and
a tensor to find hidden concepts in the tensor and the matrices.
CMTF has been used for various tasks including community
detection [1], collaborative filtering on GPS data [2], multi-
way clustering [3], chemometrics [4], and link prediction [5].

TABLE I. COMPARISON OF OUR PROPOSED SCOUT AND EXISTING
METHODS FOR COUPLED MATRIX-TENSOR FACTORIZATION. THE

PERFORMANCE BOTTLENECKS ARE COLORED IN RED. OVERALL, SCOUT
SHOWS OUTSTANDING SCALABILITY FOR ALL ASPECTS INCLUDING MODE

LENGTH, DENSITY, ORDER, AND NUMBER OF MACHINES, WHILE
COMPETITORS ARE LIMITED IN SCALABILITY FOR SOME ASPECTS.

Scalability

Method Mode Length Density Order Machine Distributed

CMTF-OPT [6] Low Low High – No
FlexiFaCT [7] Low High Low Low Yes

SCOUT High High High High Yes

A main challenge in CMTF is to efficiently handle large
scale tensors containing billions of elements in each mode.
Especially, the operations for updating factor matrices in
alternating least squares algorithm cause intermediate data ex-
plosion problem [8], [9], [10], [11]. As the size of input tensor
increases, the intermediate data becomes extremely large. Al-
though there have been several works that propose efficient al-
gorithms for coupled matrix-tensor factorization, [6], [12], [7],
they have limitations in scalability.

In this paper, we propose SCOUT, a large-scale coupled
matrix-tensor factorization algorithm running on the distributed
MAPREDUCE platform. Due to the efficiently designed al-
gorithm and highly optimized operations, SCOUT achieves
higher scalability compared to existing methods. Table I shows
the comparison of SCOUT and other existing methods.

Our main contributions are the followings:

• Algorithm. We propose SCOUT, a large-scale cou-
pled matrix-tensor factorization algorithm that runs on
MAPREDUCE. SCOUT is designed to work efficiently
by careful ordering of computation, reusing interme-
diate data, and transforming an input matrix.

• Scalability. SCOUT analyzes up to 100× larger ten-
sors than existing methods (Figure 4), and provides
linear scalability on order (number of modes in a ten-
sor) and machines while other methods have limitation

978-1-5090-2020-1/16/$31.00 © 2016 IEEE ICDE 2016 Conference811

in scalability (Table I).
• Discovery. Applying SCOUT on large real world

coupled matrix-tensor dataset, we discover interesting
hidden patterns like seasonal spike and steady atten-
tions for healthy food on Yelp dataset containing user-
business-yearmonth tensor and two coupled matrices
(Tables VII).

The codes and data used in this paper are available at
http://datalab.snu.ac.kr/scout. The rest of paper is organized as
follows. Section II presents the preliminaries of the tensor and
coupled matrix-tensor factorization. Section III describes our
proposed SCOUT method for scalable coupled matrix-tensor
factorization. Section IV presents the performance results, and
Section V presents the discovery results on real world tensors.
After describing related works in Section VI, we conclude in
Section VII.

II. PRELIMINARIES

In this section, we describe preliminaries on tensor and
coupled matrix-tensor factorization. Table II lists the defini-
tions of symbols used in this paper.

A. Tensor

Tensor. A tensor is a multi-dimensional array. The dimension
of a tensor is called mode or way. X ∈ RI1×I2×···×IN denotes
an N -mode or N -way tensor. nnz(X) denotes the number of
non-zero elements of X, and idx(X) denotes the set of indices
(e.g. (i, j, k) for 3-mode tensor X) of non-zero elements in
X. bin(X) denotes a function that converts non-zero elements
in X to 1. A slice is a two-dimensional section of a tensor;
i-th slice of X is denoted by nnz(Xi::). A fiber is a one-
dimensional section of a tensor; ij-th fiber of X is denoted by
nnz(Xij:).

Matricization of tensor. The mode-n matricization of a tensor
X ∈ RI1×I2×···×IN is denoted by X(n) ∈ RIn×(

∏
k 6=n Ik), and

arranges the mode-n fibers to be the columns of the resulting
matrix.

Kronecker product. A ⊗ B denotes the Kronecker product
of matrices A ∈ RI×J and B ∈ RK×L. It produces a matrix
of size (IK)× (JL). The result is defined by

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB


= [a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL] ,

where a1 and b1 are the first column of A and B, respectively.

Khatri-Rao product. The Khatri-Rao product (or column-
wise Kronecker product) (A�B), where A,B have the same
number of columns, say R, is defined by:

A�B = [A(:, 1)⊗B(:, 1) · · ·A(:, R)⊗B(:, R)]

If the size of A is I ×R and that of B is J ×R then that
of (A�B) is IJ ×R.

TABLE II. TABLE OF SYMBOLS.

Symbol Definition

X tensor (Euler script letter)
X matrix (uppercase, bold letter)
x column vector (lowercase, bold letter)
x scalar (lowercase, italic letter)

X(n) mode-n matricization of a tensor
N order (number of modes) of a tensor
S set
\S complement of a set S
◦ outer product
⊗ Kronecker product
� Khatri-rao product
∗ Hadamard product
×n n-mode matrix product
×̄n n-mode vector product
∗n,p n-mode matrix Hadamard product
∗̄n n-mode vector Hadamard product
∗̂x,y penetrating matrix Hadamard product
· standard product
|X|F Frobenius norm of X
bin(X) function that converts non-zero elements of X to 1
nnz(X) number of nonzero elements in X
[A : B] horizontal concatenation of two matrices A and B

Hadamard product. The Hadamard product A ∗ B is the
elementwise matrix product under the condition that A and B
have the same size (I × J). It is defined by:

A ∗B =


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ


B. Tensor Decomposition

Tensor decomposition is extensively used in tensor mining
to discover latent factors or relations in data. We introduce
PARAFAC, and PARAFAC for coupled matrix-tensor factor-
ization.

1) PARAFAC Decomposition: PARAFAC [13] is the most
generally used tensor decomposition model. It decomposes
a tensor into a sum of rank-one tensors. The definition of
PARAFAC decomposition is given below.

Definition 1 (PARAFAC Decomposition) Given an N -way
tensor X ∈ RI1×I2×···×IN , and rank R, the PARAFAC de-
composition solves

min
A(1),A(2),···A(N)

‖X−
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r ‖F

where A(n) ∈ RIn×R(n = 1, ..., N) are the factor matrices.

Figure 1a shows an example of PARAFAC decomposition.
Given a 3-way tensor X ∈ RI1×I2×I3 and rank R, PARAFAC
decomposes X into 3 factor matrices, A, B, and C, as follows:

X ≈ [A,B,C] =

R∑
r=1

ar ◦ br ◦ cr

where, A ∈ RI1×R, B ∈ RI2×R, and C ∈ RI3×R are the
factor matrices, and R is a positive integer.

812

(a) PARAFAC. (b) Coupled PARAFAC.

Fig. 1. Examples of coupled matrix-tensors. (a): Rank-R PARAFAC decomposition of a three-way tensor. The tensor X is decomposed into three factor matrices
A, B, and C. (b): Rank-R coupled matrix-tensor factorization of a three-way tensor. The tensor X and coupled matrices Y1, Y2, and Y3 are factorized into
3 factors A, B, and C for the tensor, and 3 factors D, E, and F for the coupled matrices.

Algorithm 1: N -way PARAFAC ALS Algorithm
Input: Tensor X ∈ RI1×I2×···×IN , rank R, and maximum

iterations T
Output: PARAFAC decomposition λ ∈ RR×1,A(1) ∈ RI1×R,

A(2) ∈ RI2×R, · · · ,A(N) ∈ RIN×R

1: Initialize A(n) ∈ RIn×R for n = 1, · · · , N ;
2: repeat
3: for n = 1, ..., N do
4: V← A(1)TA(1) ∗ · · · ∗A(n−1)TA(n−1) ∗

A(n+1)TA(n+1) ∗ · · · ∗A(N)TA(N);
5: A(n) ←

X(n)(A
(N) � · · · �A(n+1) �A(n−1) � · · · �A(1))V†;

6: Normalize columns of A(n) (storing norms in vector λ);
7: end for
8: until convergence criterion is met.
9: return λ,A(1),A(2), · · · ,A(N);

Algorithm 1 shows the alternating least squares algorithm
for N -way PARAFAC decomposition. The stopping criterion
for Algorithm 1 is either one of the following: 1) the difference
between the two least squares errors of consecutive iterations
is smaller than a threshold, or 2) the maximum number of
iterations is exceeded.

2) Coupled Matrix-Tensor Factorization: Given a tensor,
and matrices where some modes of the tensor are coupled
with (see Figure 2), the coupled matrix-tensor factorization
decomposes the tensor as well as the matrices together. The
formal definition of coupled matrix-tensor factorization based
on PARAFAC is as follows [6] [12]:

Definition 2 (Coupled Matrix Tensor Factorization)
Given an N -way tensor X ∈ RI1×I2×···×IN , and matrices
Y(n), n = 1, ..., N , of size I1 × J1, · · · , and IN × JN
respectively, and rank R, the coupled matrix-tensor
factorization solves

min
A(1),··· ,A(N),B(1),··· ,B(N)

‖X−
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r ‖F

+‖Y(1) −A(1)B(1)T ‖F + · · ·+ ‖Y(N) −A(N)B(N)T ‖F

where R is a positive integer, and A(1) ∈ RI1×R, A(2) ∈
RI2×R, · · · ,A(N) ∈ RIN×R, B(1) ∈ RJ1×R, B(2) ∈
RJ2×R, · · · ,B(N) ∈ RJN×R are the factor matrices.

Figure 1b shows an example of coupled matrix-tensor fac-
torization. Given a 3-way tensor X ∈ RI1×I2×I3 , and coupled
matrices Y(1) ∈ RI1×J1 , Y(2) ∈ RI2×J2 , and Y(3) ∈ RI3×J3 ,
the coupled matrix-tensor factorization decomposes the tensor

(a) MovieLens. (b) YELP.

Fig. 2. Examples of coupled matrix-tensors. (a): a 3-way rating tensor
containing user-movie-time triples and a coupled movie-genre matrix. (b):
a 3-way rating tensor containing user-business-time triples and two coupled
matrices (friendship matrix and business-category matrix).

into 3 factor matrices, A, B, and C, and each coupled matrix
into a factor matrix D,E, and F, respectively, as follows:

X ≈ [A,B,C] =

R∑
r=1

ar ◦ br ◦ cr,

Y(1) ≈ ADT ,Y(2) ≈ BET ,Y(3) ≈ CFT .

where A ∈ RI1×R,B ∈ RI2×R, C ∈ RI3×R, D ∈ RJ1×R,
E ∈ RJ2×R, and F ∈ RJ3×R are the factor matrices of coupled
matrix-tensor factorization.

Algorithm 2 shows the alternating least squares algorithm
for solving coupled matrix-tensor factorization [12]. The sym-
bol : denotes horizontal concatenation of two matrices.

C. n-Mode Product

The n-mode product is a generalization of matrix product
into higher orders. The definitions of n-mode vector product
and n-mode matrix product are as follows.

n-mode vector product. The n-mode vector product of a
tensor X ∈ RI1×I2×···×IN with a vector v ∈ RIn is denoted
by X×̄nv and is of size I1 × · · ·In−1 × In+1 · · · ×IN . It is
defined by

(X×̄nv)i1...in−1in+1...iN =

In∑
in=1

xi1...in...iN vin .

n-mode matrix product. The n-mode matrix product of a
tensor X ∈ RI1×I2×···×IN with a matrix U ∈ RJ×In is
denoted by X×nU and is of size I1×···In−1×J×In+1···×IN .
It is defined by

813

Algorithm 2: N-way Coupled Matrix Tensor Factorization ALS Algorithm

Input: Tensor X ∈ RI1×I2×···×IN , coupled matrices Y(n) ∈ RIn×Jn(n = 1, · · · , N), and rank R.
Output: Factor matrices of tensor A(n) ∈ RIn×R(n = 1, · · · , N), and factor matrices of coupled matrices B(n) ∈ RJn×R(n = 1, · · · , N).

1: Initialize A(n) ∈ RIn×R,B(n) ∈ RJn×R for n = 1, · · · , N ;
2: repeat
3: /* updating tensor factors */
4: for n = 1, · · · , N do
5: V← A(1)TA(1) ∗ · · · ∗A(n−1)TA(n−1) ∗A(n+1)TA(n+1) ∗ · · · ∗A(N)TA(N) + B(n)TB(n);
6: A(n) ← [X(n) : Y(n)][(A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1))T : B(n)T]TV†;
7: end for
8: /* updating coupled matrix factors */
9: for n = 1, · · · , N do

10: B(n) ← (Y(n))T (A(n)†)T ;
11: end for
12: until convergence criterion is met.

(X×n U)i1...in−1jin+1...iN =

In∑
in=1

xi1...in...iNujin .

In the standard matrix-matrix product, n is 2. For example,
a matrix product AB is represented by A×2 B

T .

n-mode vector Hadamard product [14]. The n-mode vector
Hadamard product of a tensor X ∈ RI1×I2×···×IN and a vector
v ∈ RIn is denoted by X∗̄nv and is of size I1× I2×· · ·× IN .
It is defined by

(X∗̄nv)i1...in...iN = xi1...in...iN vin .

n-mode matrix Hadamard product [14]. The n-mode matrix
Hadamard product of a tensor X ∈ RI1×I2×···×IN with a
matrix U ∈ RQ×In is denoted by X ∗n,p U and is of size
I1× I2×· · ·× In×· · ·× Ip−1×Q ×· · ·× IN assuming n < p
without loss of generality. n denotes the common mode, and
p denotes the index to insert the newly created mode. I.e.,

(X ∗n,p U)i1i2...in...ip−1q...iN = (X∗̄nUT
q:)i1i2...iN ,

where Uq: is the qth row of U.

Collapse [14]. The Collapse operation of a tensor X ∈
RI1×I2×···×IN on mode n is denoted by Collapse(X)n and
is of size I1 × · · · × I(n−1) × I(n+1) × · · · × IN . It is defined
by

(Collapse(X)n)i1...in−1in+1...iN =

In∑
in=1

xi1...in...iN .

Jeon et al. [14] observed that n-mode product is expressed
by n-mode matrix Hadamard product and Collapse: i.e., X×n

BT = Collapse(X ∗n,n+1 BT)n. The observation has been
used for scalable PARAFAC and Tucker decomposition in the
work.

III. PROPOSED METHOD

In this section, we present SCOUT, our proposed method
for scalable coupled matrix-tensor factorization on MAPRE-
DUCE.

A. Overview

How can we design an efficient algorithm for large-scale
coupled matrix-tensor factorization (CMTF)? The CMTF al-
gorithm (Algorithm 2) contains two challenging operations:
updating tensor factors (lines 5 and 6) and matrix factors (line
10). In the following subsections, we describe the following
ideas to efficiently update tensor and matrix factors in dis-
tributed systems.

• (Section III-B) Careful ordering of computation to
decrease floating point operations (flops) in updating
tensor factors.

• (Section III-C) Reusing intermediate data to decrease
total intermediate data and flops in updating tensor
factors.

• (Section III-D) Transformation of matrix to easily get
the output, and a MAPREDUCE-specific method to
shrink the intermediate data in updating matrix and
tensor factors.

B. Careful Ordering of Computation

The operation in line 6 of Algorithm 2 is divided into
the following two sub-operations where ’:’ is the symbol for
horizontal concatenation.

H← (A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1))T (1)

A(n) ← [X(n) : Y(n)][H : B(n)T]TV† (2)

Note that Equation (2) performs the multiplication of the
three matrices [X(n) : Y(n)], [H : B(n)T]T , and V†. The
question is, how to determine the order of computation of the
three terms? Due to the associativity of matrix multiplication,
we can compute Equation (2) by multiplying the first two
matrices first, and multiply the result with the third matrix:

A(n) ← ([X(n) : Y(n)][H : B(n)T]T)V† (3)

Or, we can compute Equation (2) by multiplying the last
two matrices first, and multiply the first matrix with the result:

814

A(n) ← [X(n) : Y(n)]([H : B(n)T]TV†) (4)

It can be shown that Equation (3) requires much smaller
number of floating point operations (flops) than Equation (4).

Lemma 1 Equation (3) requires 2(nnz(X)+nnz(Y(n)))R+
2InR

2 flops while Equation (4) requires 2(nnz(X) +
nnz(Y(n)))R+2(I1 · · · In−1In+1 · · · IN +Jn)R2 flops, where
nnz(X) and nnz(Y(n)) are the number of nonzeros in the
tensor X and coupled matrix Y(n), respectively.

Proof: For notational convenience let N1 = [X(n) : Y(n)]
and N2 = [H : B(n)T]T . N1 is a sparse matrix containing
nnz(X)+nnz(Y(n)) nonzeros. N2 is a dense matrix contain-
ing (I1 · · · In−1In+1 · · · IN +JN)R nonzeros. In the following
we use the basic fact that 1) multiplying a sparse matrix A and
a dense vector v requires 2nnz(A) flops, and 2) multiplying
two dense matrices A ∈ Ra×b and B ∈ Rb×c requires 2abc
flops.

In Equation (3), multiplying N1 by N2, requires
2(nnz(X) + nnz(Y(n)))R flops. Since the result is a dense
matrix, (N1N2)V† requires additional 2InR

2 flops. In total,
Equation (3) requires 2(nnz(X)+nnz(Y(n)))R+2InR

2 flops.

In Equation (4), multiplying N2 by V† requires
2(I1 · · · In−1In+1 · · · IN + Jn)R2 flops. Multiplying
N1(N2V

†) requires another 2(nnz(X)+nnz(Y(n)))R flops.
In total, Equation (4) requires 2(nnz(X) + nnz(Y(n)))R +
2(I1 · · · In−1In+1 · · · IN + Jn)R2 flops.

Based on Lemma 1, we choose the order in Equation (3).

C. Reusing Intermediate Data

Based on the result from Section III-B, we need to multiply
the first two terms in Equation (3). That means we need to
perform the following three computations for Equation (3).

M1 ← X(n)H
T (5)

M2 ← Y(n)B(n) (6)

M3 ← [M1 : M2]V† (7)

Since Equation (5) requires much larger computation than
Equation (6), we focus on Equation (5) in this subsection.
Computing Equation (7) is straightforward once we compute
V† which will be discussed in Section III-D.

A naive method to compute Equation (5) is multi-
plying X(n) by precomputed HT . However, precomput-
ing HT is prohibitively expensive, since its dimension is
RIn×(I1···In−1In+1···IN). This is called the intermediate data
explosion problem which means the amount of intermediate
data (in this case, H) becomes very large, although the input
and the output are not too large. We first describe how the
previous works including GigaTensor [9] and HaTen2 [14]
addressed the problem. Then, we describe how our SCOUT
method further improves the performance.

GigaTensor and HaTen2’s solution. GigaTensor and
HaTen2 solved the intermediate data explosion problem by

reordering computation and exploiting the sparsity of real
world tensors. As shown in Figure 3(a), both algorithms
exploit the fact that H needs not be explicitly constructed.
Instead, each factor matrix, which is needed to compute H, is
independently multiplied to the matricized tensor X(n). The
multiplied matrices are combined later to form the resulting
matrix M1 in Equation (5). Since the tensor X is sparse, the
result of multiplying each factor matrix to the tensor is still
sparse. Therefore, the intermediate data as well as the number
of floating point operations greatly decrease.

Our Solution (SCOUT). Our proposed SCOUT method
improves GigaTensor and HaTen2 by further decreasing the
intermediate data and the number of floating point operations.
We observe that the resulting intermediate tensor from the
multiplication of X(n) and the first factor matrix can be reused
for further multiplication. That is, instead of creating new
intermediate tensors for each multiplication of X(n) and a
factor matrix, SCOUT performs additional factor multiplica-
tions directly on the resulting intermediate tensor from the
first multiplication, as shown in Figure 3(b). After performing
the last multiplication, the answer of Equation (5) is derived
by aggregating the elements of the resulting intermediate
tensor. To precisely describe SCOUT, we need to define two
important operations: penetrating matrix Hadamard product,
and MultiCollapse.

Definition 3 (Penetrating matrix Hadamard product) The
penetrating matrix Hadamard product of a tensor
X ∈ RI1×I2×···×IN and a matrix U ∈ RIx×Iy is denoted by
X∗̂(x,y)U and is of size I1 × I2 × · · · × IN . It is defined by

(X∗̂(x,y)U)i1···ix···iy···iN = xi1···ix···iy···iNuixiy .

We named the operation as ’penetrating’ matrix Hadamard
product since it is reminiscent of a matrix penetrating through
a tensor, and performing Hadamard product along the way.

Definition 4 (MultiCollapse) The MultiCollapse oper-
ation of a tensor X ∈ RI1×I2×···×IN on a mode set S is
denoted by MultiCollapse(X)S . It is defined by

(MultiCollapse(X)S)ia1
···iap

=
∑

iap+1
···iaN

xi1···iN .

where S = {ap+1, · · · , aN}, and Sc = {a1, · · · , ap}.

The penetrating matrix Hadamard product corresponds
to the additional factor multiplication, and MultiCollapse
corresponds to aggregating the elements from the resulting
intermediate tensor. Using these operations, we reexpress the
tensor update operations (Equations (5), (6), (7)) for all n by
Algorithm 3.

We prove the correctness of Algorithm 3 using the follow-
ing lemma.

Lemma 2 Given a tensor X ∈ RI1×I2×···×IN and factor
matrices of tensor A(n) ∈ RIn×R(n = 1, · · · , N), the
Equation (5) M1 = X(n)H

T is equivalent to lines 3∼7 of
Algorithm 3.

Proof: Without loss of generality, assume n = N. The
(iN , r)-th element of M1 is defined by

M1(iN , r) =
∑(I1,··· ,IN−1)

(i1,··· ,iN−1)=(1,··· ,1) xi1···iNa
(1)
i1r
· · · a(N−1)iN−1r

815

(a) GigaTensor [9] and HaTen2 [14]. (b) Proposed SCOUT method.

Fig. 3. Comparison of the method to compute X(n)H
T on a 3-mode tensor. (a) In GigaTensor and HaTen2, each factor matrix, which is needed to compute

HT , is independently multiplied to the matricized tensor X(n). The multiplied matrices are combined later to form the resulting matrix. Note that X(n) needs to
be converted to a binary tensor (bin(X) operation) except in the first multiplication. (b) SCOUT reuses the resulting intermediate tensor from the multiplication
of X(n) and the first factor matrix. That is, additional factor multiplication is performed directly on the resulting intermediate tensor, thereby eliminating the
need to maintain N−1 intermediate resulting tensors and apply the bin(X) operation. Compared to HaTen2 (or GigaTensor), SCOUT decreases the intermediate
data size by N − 1 times, and also the computation time to ∼50 %.

Algorithm 3: SCOUT- Updating Tensor Factor
Input: Tensor X ∈ RI1×I2×···×IN , factor matrices of tensor

A(n) ∈ RIn×R(n = 1, · · · , N), factor matrices of coupled
matrices B(n) ∈ RJn×R(n = 1, · · · , N), and coupled matrices
Y(n) ∈ RIn×Jn(n = 1, · · · , N).

Output: Factor matrices of tensor A(n) ∈ RIn×R(n = 1, · · · , N).
1: for n = 1, · · · , N do
2: V← A(1)TA(1) ∗ · · · ∗A(n−1)TA(n−1) ∗

A(n+1)TA(n+1) ∗ · · · ∗A(N)TA(N);
3: M1 ← X ∗1,N+1 A

(1)T ;
4: for i = 2, · · · , N(i 6= n) do
5: M1 ←M1∗̂(N+1,i)A

(i)T ;
6: end for
7: M←MultiCollapse(M1)\{n,N+1};
8: if Y(n) is coupled then
9: V← V + B(n)TB(n);

10: M2 ← Y(n) ∗2,3 B(n)T ;
11: M←M + Collapse(M2)2;
12: end if
13: A(n) ←MV†;
14: end for

where xi1···iN and a
(n)
inr

are the elements of tensor X and
factor matrices of tensor A(n) respectively.

On the line 3 of Algorithm 3, the (i1, · · · , iN , r)-th element
of M1 is given by

(X ∗1,N+1A
(1)T)i1···iNr = (X∗̄1a(1)r)i1···iN = xi1···iNa

(1)
i1r

After executing the line 5 of Algorithm 3 once, the
(i1, · · · , iN , r)-th element of M1 is given by

(M1∗̂(N+1,2)A
(2)T)i1···iNr = xi1···iNra

(1)
i1r

a
(2)
i2r

In the same way, after executing the line 4∼6 of Algo-
rithm 3, the (i1, · · · , iN , r)-th element of M1 is given by

M1(i1, · · · , iN , r) = xi1···iNra
(1)
i1r
· · · a(N−1)iN−1r

Lastly, on the line 7 of Algorithm 3, the (iN , r)-th element
of M is given by

MultiCollapse(M1)\{n,N+1}

=
∑(I1,··· ,IN−1)

(i1,··· ,iN−1)=(1,··· ,1) xi1···iNra
(1)
i1r
· · · a(N−1)iN−1r

, which is equivalent to M1 in Equation (5).

Both the penetrating matrix Hadamard product and
MultiCollapse operations are efficiently implementable in
MAPREDUCE: they require linear running time on both map-
pers and reducers.

MAPREDUCE algorithm. The MAPREDUCE algorithms
for penetrating Hadamard product and MultiCollapse are as
follows.

<Penetrating matrix Hadamard product
(T∗̂(n,N+1)A

(n)) >

• MAP: map 〈i1, i2, · · · , iN , r,T(i1, i2, · · · , iN , r)〉
on (in), and 〈in, 1,A(n)(in, 1), ..., R,A(n)(in, R)〉
on (in) such that tuples with the same key are
shuffled to the same reducer in the form of 〈key:(in),
value: {(i1, i2, · · · , iN , r,T(i1, i2, · · · , iN , r))},
(1,A(n)(in, 1), ..., R,A(n)(in, R))〉

• REDUCE: take 〈key: (in), value: {(i1, i2, · · · , iN , r,
T(i1, i2, · · · , iN , r))},
(1,A(n)(in, 1), ..., R,A(n)(in, R))〉 and emit
〈i1, i2, · · · , iN , r,T(i1, i2, · · · , iN , r)A(n)(in, r)〉
for r = 1, · · · , R.

<MultiCollapse (MultiCollapse(T)\(n,N+1)) >

• MAP: map 〈i1, i2, · · · , iN , r,T(i1, i2, · · · , iN , r)〉 on
(in) such that tuples with the same key are shuffled
to the same reducer in the form of 〈key:(in), value:
{(i1, i2, · · · , iN , r,T(i1, i2, · · · , iN , r))}〉

• REDUCE: take 〈key: (in), value: {(i1, i2, · · · , iN , r,
T(i1, i2, · · · , iN , r))}〉 and emit
〈in, {(r,

∑
i1,··· ,in−1,in+1,··· ,iN T(· · · , in, · · · , r))}〉

for each r = 1, · · · , R.

Discussion. Table III shows the cost comparison between
HaTen2 [14](or GigaTensor) and SCOUT according to the
number of floating point operations and the size of intermediate
data. Compared to HaTen2, SCOUT decreases the intermediate

816

TABLE III. COMPARISON OF OUR SCOUT AND PREVIOUS HATEN2
METHOD FOR EQUATION (5) WITH REGARD TO THE NUMBER OF FLOATING
POINT OPERATIONS AND THE MAXIMUM INTERMEDIATE DATA SIZE. NOTE

THAT SCOUT DECREASES THE INTERMEDIATE DATA SIZE BY N − 1
TIMES, AND THE NUMBER OF FLOATING POINT OPERATIONS TO ∼50 %,

COMPARED TO THE PREVIOUS METHOD. (N : ORDER, R: RANK, nnz(X):
THE NUMBER OF NONZEROS IN X)

Maximum
Method Flops Intermediate Data

HaTen2 [14] 2nnz(X)(N − 1)R nnz(X)(N − 1)R
SCOUT nnz(X)NR nnz(X)R

data size by N − 1 times, and the number of floating point
operations to ∼50 %.

D. Transformation of Matrix and Shrinking Intermediate Data

We describe how to efficiently perform pseudo-inverse and
parallel outer product computation in SCOUT. We introduce
the idea of transforming an input matrix to easily get the
output, and a MAPREDUCE-specific method to shrink the
intermediate data.

Computing Pseudo Inverse. Updating the coupled matrix
factors (lines 9-11 Algorithm 2) is straightforward, once we
compute the pseudo inverse of factor matrices. The typical
method of computing the pseudo inverse (as in MATLAB
and Octave [15]) is to use the SVD: that is, given an SVD
A = UΣV T of an input matrix A, the pseudo inverse is
given by A† = V Σ−1UT . However, applying the typical
method to a factor matrix is infeasible since each factor matrix
A(n) ∈ RIn×R, where In >> R, is a huge dense matrix.
Our idea to solve the problem is to transform the pseudo-
inverse computation of the original matrix to that of a smaller
matrix. We exploit the basic result in linear algebra that the
pseudo-inverse A† of a matrix A is equivalent to (ATA)†AT :
we compute (A(n)TA(n))†A(n)T to compute (A(n))†. Note
that (A(n)TA(n)) ∈ RR×R is a much smaller matrix than
the original matrix A(n) ∈ RIn×R, and thus computing the
pseudo inverse of (A(n)TA(n)) is much efficient than that of
the original matrix. The algorithm for updating matrix factor
in SCOUT is described in Algorithm 4. Note that line 5 uses
the Collapse operation (defined in Section II-C) for efficient
multiplication of two matrices.

Computing Parallel Outer Product. The self-product
A(n)TA(n) of a factor matrix A(n) is required in lines 2 and
9 of Algorithm 3 and line 2 of Algorithm 4. We describe a
MAPREDUCE-specific method to shrink the intermediate data
size in the parallel outer product.

In GigaTensor (or HaTen2), each mapper reads each row
of a factor matrix, and outputs R×R (R: Rank) intermediate
matrix; the combiner of MAPREDUCE combines the results
before shipping them to reducers. Depending on the number
of input lines to the mappers, and the frequency the combiner is
called, the intermediate data can grow large since each mapper
outputs I

M of R×R matrices (I: the number of rows in A(n),
M : the number of mappers). To overcome the problem, we pre-
allocate an R×R matrix for each mapper in the beginning (in
configure() function), update the matrix for each input row in
the mapper, and emit the matrix when the mapper finishes (in

Algorithm 4: SCOUT- Updating Matrix Factor

Input: Factor matrices of tensor A(n) ∈ RIn×R(n = 1, · · · , N),
and coupled matrices Y(n) ∈ RIn×Jn(n = 1, · · · , N).

Output: Factor matrices of coupled matrices
B(n) ∈ RJn×R(n = 1, · · · , N).

1: for n = 1, · · · , N do
2: P← A(n)TA(n);
3: P← P†A(n)T ;
4: B← Y(n)T ∗2,3 P;
5: B(n) ← Collapse(B)2;
6: end for

close() function). Note that only one R×R matrix is emitted
at the end; thus, our method decreases the intermediate mapper
output size from IR2

M to R2.

MAPREDUCE algorithm. The MAPREDUCE algorithm
for parallel outer product is as follows.

<Parallel outer product (A(n)TA(n)) >

• MAP: allocate and initialize a matrix M ∈ RR×R

in configure(). For ith row A
(n)
i: of A(n), perform

M ← M + A
(n)
i:

T
A

(n)
i: . When the mapper finishes,

emit 〈key:0, value: (M(1, 1), · · · ,M(R,R))〉.
• REDUCE: take 〈key:0, value:
{(M(1, 1), · · · ,M(R,R))}〉, perform S(i, j) ←
S(i, j)+M(i, j) for (i, j) ∈ ([1..R], [1..R]), and emit
〈S(1, 1), · · · ,S(R,R)〉

IV. PERFORMANCE

In Sections IV and V, we present experimental results to
answer the following questions:

Q1 What is the performance of SCOUT compared with
existing methods?
Q2 How well does SCOUT scale up with various factors
(nonzeros, mode length, density (proportion of nonzero
elements in a tensor), rank, order, and number of machines)?
Q3 What are the discoveries on real world tensors?

We describe experimental settings in Section IV-A, and
then present scalability results in Sections IV-B and IV-C
to answer Q1 and Q2. The answer to Q3 is presented in
Section V.

A. Experimental Settings

1) Dataset: Real-world and synthetic coupled matrix-
tensor datasets used in our experiments are summarized in
Table IV, with the following details. Matrices and a tensor
sharing the same modes are coupled as in Figure 2.

• Microsoft Academic Graph: Microsoft Academic
Graph dataset [16] contains publication information
including authors, papers, conferences, affiliations,
keywords, etc. We convert the dataset into a paper-
author-affiliation tensor, and a paper-field of study
matrix. E.g., a tensor element (’Author A’, ’Paper B’,

817

(a) Nonzeros and Mode Length. (b) Density.

(c) Rank. (d) Order.

Fig. 4. Data scalability of SCOUT compared to other CMTF methods with regard to various data aspects. The experimental settings and datasets are explained
in detail at Section IV-A. o.o.m.: out of memory, o.o.t.: out of time (takes more than 1 day). Overall, SCOUT shows up to 100× larger data scalability than
existing methods, and scales well with regard to all aspects.

’Institution C’) means the author A from Institution C
published paper B.

• MovieLens: The movie rating dataset from Grou-
pLens [17]. It is composed of a user-movie-time
(year-month) tensor and a movie-genre matrix: e.g.,
a tensor element (’John’, ’Batman’, ’2012-03’, ’4.5’)
means that John watched Batman in March, 2012 and
gave 4.5 rating to the movie, and a matrix element
(’Batman’, ’action’, ’1’) means that Batman belongs
to action genre.

• YELP: The YELP review dataset [18] is composed of
a user-business-time (year-month) tensor, a user-user
(friendship) matrix, and a business-category matrix:
e.g., a tensor element (’John’, ’starbucks’, ’2014-06’,
’3’) means that John visited starbucks in June, 2014
and gave 3 rating to the business; a user-user matrix
element (’10’, ’20’, ’1’) means that user ’10’ and ’20’
are friends; and a business-category matrix element
(’Wall Mart’, ’Grocery’, ’1’) means that ’Wall Mart’
belongs to ’Grocery’ category.

• Random: Synthetic random tensors of size I × I × I
and coupled matrices of size I × I , where the size
I varies from 103 to 109, and each tensor is coupled
with a matrix. For tensor data, the number of nonzeros
varies from 104 to 1010, and the density varies from
10−15 to 10−5. For coupled matrix data, the number
of nonzeros varies from 10 to 107, and the density
varies from 10−17 to 10−5. First mode of tensor and
matrix are always coupled in every CMTF experiment.

2) Competitors: We compare SCOUT with coupled matrix-
tensor factorization methods: FlexiFaCT [7], a distributed cou-
pled matrix-tensor factorization method on MAPREDUCE, and
CMTF-OPT [6], a single-machine method. We also compare
SCOUT with the state-of-the-art tensor factorization method
HaTen2 [14] since SCOUT’s idea of reusing intermediate
data (Section III-C) can be applied to the standard tensor
factorization as well. To compare SCOUT and HaTen2, we
run SCOUT without any coupled matrices.

3) Machines: SCOUT, HaTen2, and FlexiFaCT run on
a HADOOP cluster with 40 machines where each machine
has a quad-core Intel Xeon E3 1230v3 3.3Ghz CPU, 32 GB
RAM, and 12 Terabytes disk. The number of reducers used
in the experiments is 100. CMTF-OPT, the single machine
competitor, runs on a machine from the HADOOP cluster.

B. Comparison with CMTF methods

We compare SCOUT and other CMTF methods (FlexiFaCT
and CMTF-OPT) in terms of scalability. We report the data
scalability by increasing the data size in various aspects,
and then the machine scalability by increasing the number
of machines. The result is summarized in Table I with the
following details.

1) Data Scalability: We use synthetic random tensors and
matrices, described in Section IV-A1, for data scalability
experiments. We note that SCOUT is slower than CMTF-OPT
and FlexiFaCT for small data, with the following reasons.

818

TABLE IV. SUMMARY OF THE COUPLED MATRIX-TENSOR DATA USED. B: BILLION, M: MILLION, K: THOUSAND. FOS: FIELD OF STUDY.

Name Data Mode Nonzeros

Paper Author Affiliation FoS

Microsoft Academic Paper-Author-Affiliation Tensor 122 M 123 M 2.7 M – – 325 M
Graph [16] Paper-Field of Study (FoS) Matrix 122 M – – 47K – 176 M

User Movie YearMonth Genre Year

MovieLens [17] User-Movie-YearMonth Tensor 71 K 10 K 157 – 10 M
Movie-Genre Matrix – 10 K – 20 – 21 K
Movie-Year Matrix – 10 K – – 94 10 K

User Business YearMonth User Category

User-Business-YearMonth Tensor 70 K 15 K 108 – – 334 K
YELP [18] Business-Category Matrix – 15 K – – 590 590

User-User Matrix 70 K – – 70 K – 303 K

I1 = · · · = IN J1 = · · · = JN

Random X (size: I1 × · · · × IN) Tensor 1 K∼1 B – – – – 10 K∼10 B
Yn (size: In × Jn) Matrix 1 K∼ 1 B 1 K∼1 B – – – 10∼10 M

• CMTF-OPT is a single machine algorithm while
SCOUT is a distributed algorithm running on
HADOOP which requires a lot of overhead to run
(e.g., JVM setup, distributing code and data, etc.). The
running time of a distributed algorithm on small data
is dominated by the overhead, and thus SCOUT is
relatively slower than CMTF-OPT for small data.

• FlexiFaCT is fast for small data since it is based on
gradient descent which is more efficient than ALS
method if the amount of communication between ma-
chines is not considered. However, FlexiFaCT requires
huge amount of communication between machines,
and the amount depends heavily on the order of a
tensor, mode length, and the number of machines.
Thus FlexiFaCT can process small data quickly, while
it cannot process large tensors due to the huge amount
of communication.

Below, we describe data scalability with regard to various
data aspects in detail.

Mode Length and Nonzeros. We increase the mode lengths
I1 = I2 = I3 from 103 to 109. The number of nonzeros is set
to I1 × 10 and the rank to 10. We assume there is a square
coupled matrix of size I1 × I1, with the number of nonzeros
set to I1/100. As shown in Figure 4(a), both FlexiFaCT and
CMTF-OPT cause out-of-memory error when I1 = I2 = I3 >
107 while our proposed SCOUT continues to run even when
I1 = I2 = I3 = 109. Since FlexiFaCT and CMTF-OPT cannot
process very large data, in the following we use medium-sized
tensor and matrix data which can be processed by either of
them.

Density. We increase the density (= nnz(X)
I1×I2×···×IN) of tensor

from 10−9 to 10−5 where the lengths I1 = I2 = I3 of modes
are set to 105. The rank is set to 10. The coupled matrix has
the same mode lengths and the density as those of the tensor.
As shown in Figure 4(b), SCOUT and FlexiFaCT scale up to
10−5, while CMTF-OPT runs out of memory. SCOUT takes
more running time than FlexiFaCT, but the difference becomes
smaller as the size of data increases.

Rank. We increase the rank of a tensor from 10 to 160
where the lengths I1 = I2 = I3 of modes are set to
106 and the number of nonzeros is set to 107. The coupled
matrix has the same mode lengths as those of the tensor and
has 104 nonzeros. As shown in Figure 4(c), both SCOUT
and FlexiFaCT decompose tensors with 2× larger rank than
CMTF-OPT.

Order. We increase the order of a tensor from 3 to 6 without
using coupled matrices since the FlexiFaCT code does not run
with coupled matrices when the order is greater than 3. The
mode lengths I1 = I2 = · · · = IN are set to 106 and the
number of nonzeros is set to 107. The rank is set to 10. As
shown in Figure 4(d), FlexiFaCT takes too much time (denoted
by ’o.o.t.’: out-of-time which means it takes more than 1
day) when the order becomes greater than 4. The reason is
that FlexiFaCT has an exponential communication complexity,
O(MN−2NIK) [19] (M : the number of machines, N : order,
I: mode length, and K: rank), with regard to the order.

2) Machine Scalability: We increase the number of ma-
chines from 10 to 40. The mode lengths I1 = I2 = I3 are
set to 105, the density is set to 10−6, and the rank to 10.
The coupled matrix has the same mode lengths and density
as those of the tensor. Figure 5 shows machine scalability of
SCOUT and FlexiFaCT. TM means the running time using M
machines. SCOUT shows 3.18× speed up when increasing
the number of machines from 10 to 40, while FlexiFaCT
slows down due to the exponential communication complexity.
Note that SCOUT achieves linear scalability with regard to the
number of machines.

C. Comparison with Standard Tensor Factorization Method

Figure 6 shows the running time comparison of SCOUT
and HaTen2, the state-of-the-art tensor factorization method,
for standard tensor factorization (PARAFAC). We increase the
lengths I1 = I2 = I3 of modes from 103 to 108. The number
of nonzeros is set to I1 × 10 and the rank is set to 10. Note
that for all tensor sizes, SCOUT is at least 4.87 × faster than
HaTen2.

819

Fig. 5. Machine scalability of SCOUT compared to FlexiFaCT. TM means
the running time using M machines. SCOUT shows 3.18× speed up when
increasing the number of machines from 10 to 40, while FlexiFaCT slows
down due to the exponential communication complexity. Note that SCOUT
achieves linear scalability on the number of machines.

Fig. 6. Running time of SCOUT compared to HaTen2, for standard tensor
factorization (PARAFAC). For all tensor sizes, SCOUT is at least 4.87 × faster
than HaTen2.

V. DISCOVERY

To answer the question Q3 listed in the beginning of
Section IV, we analyze large-scale real-world tensor datasets
shown in Table IV using SCOUT.

A. Microsoft Academic Graph

We find several latent concepts in Microsoft Academic
Graph dataset which contains a paper-author-affiliation tensor,
and a paper-field of study matrix. We apply SCOUT on the
dataset, and pick top-k highest valued elements from each
factor while excluding too general elements appearing in
almost every column [20]. Table V shows 3 notable concepts
including ’Optics’, ’Medical Science’, and ’Genetics’. Note
that all the field of studies within a concept are related; this
implies that the additional coupled matrix affects the output
of the ’paper’ factor which is shared by the matrix and the
tensor.

B. MovieLens

We also find latent concepts in MovieLens dataset which
consists of a user-movie-time (year-month) tensor and a movie-
genre matrix, as shown in Figure 2a. We apply a similar
technique as in the Microsoft Academic Graph dataset; Ta-
ble VI shows the three notable concepts, including the ’Drama’

TABLE V. THREE NOTABLE GROUPS FROM THE MICROSOFT
ACADEMIC GRAPH DATASET. FOS: FIELD OF STUDY.

Concept Mode Attribute

Paper 5909974, 6045687, 827916
Author P Debarber, J Espinoza, X Yang

C1:Optics Affiliation Institute for technology physics,
Institute for experimental physics

FoS Optical vortex, Optoelectronic, Spectrum

Paper 1795926, 2917374, 1791947
C2:Medical Author I Cionni, M Parada, SP Bass

Science Affiliation Harvard Medical School,
Institute for Medical Virology

FoS Public Health, Biomarker, Epidemology

Paper 7240515, 4364504, 5438150
Author B Jalilzadeh, J Gagneur, C Biemont

C3:Genetics Affiliation Biomedical Research Center,
Medicine Research Institute

FoS Biomarker, DNA Sequencing,
Human Sexuality

Fig. 7. Discovered patterns for the date factors on the YELP dataset. Note
that the date factor for the ’Ice Cream’ concept shows a spike around summer,
showing people’s soaring interests in ice cream at that time. On the other hand,
the date factor for the ’Health Market’ concept shows steady interests in health
regardless of seasons.

concept, ’Action’ concept, and ’Comedy’ concept. Note that
all the movies and genres under a concept are closely related.

C. YELP

Using SCOUT, we discover interesting patterns on the
YELP dataset which consists of user-business-yearmonth ten-
sor and two coupled matrices: user-user (friendship) and
business-category matrix (Figure 2b). Table VII shows two
notable discovered concepts, along with the corresponding date
(yearmonth) factors. Note that factors in a coupled matrix are
tightly correlated: e.g., all the businesses and categories in the
concept C1 are related to ’Health Market’. Note also that the
found user factor groups similar users: e.g., the users 391 and
846 get high scores since both are friends of the user 55. These
results show that the coupled matrices affect the output of the
factorization.

We also find temporal trends in the rating behavior of the
YELP dataset. Figure 7 shows the two date factors (D1 and D2

820

TABLE VI. THREE NOTABLE GROUPS FROM THE MOVIELENS
DATASET.

Concept Mode Attribute

User 56334, 38812, 42129
Movie Good Work (Beau travail)(1999),

C1:Drama Shoot the Piano Player(1960), Iris(2001)
YearMonth 1999.10, 2000.08, 2000.11

Genre Drama, Thriller, Romance

User 18727, 19859, 14134
Movie Stargate(1994), Aladdin(1992),

C2:Action Scanners(1981)
YearMonth 2005.02, 2005.04, 2008.10

Genre Action, Adventure, Sci-Fi

User 27261, 12995, 68414
Movie A Kid in King Arthur’s Court(1995),

C3:Comedy Dead Tired (Grosse Fatigue)(1994),
Better Than Chocolate (1999)

YearMonth 1999.12, 2000.04, 2000.11
Genre Comedy, Romance, Drama

TABLE VII. TWO NOTABLE GROUPS FROM THE YELP DATASET.

Concept C1: Health Concept C2: Ice
Market Cream

User 391, 846, 3581 4627, 26073, 35267
Friend 55, 213, 846 27, 463, 1520

Business Luci’s Healthy Lee’s Cream Liqueur
Marketplace

Whole Foods Market Yogurtland
Asiana Market Churn

Category Health Markets Ice Cream
Home Health Care Frozen Yogurt

Asian Fusion Gelato

Date D1: Steady Date D2: Spike
in Summer

YearMonth 2011.9.1, 2011.10.1, 2011.8.1, 2011.7.1,
2011.12.1 2011.9.1

from Table VII), where the horizontal axis denotes the months
and the vertical axis denotes the relative rating score. Note
that the date factor related to the ’Ice Cream’ concept shows a
spike around summer which shows people’s soaring interests
in ice cream at that time. On the other hand, the date factor
related to the ’Health Market’ concept shows steady interests
since people are interested in health regardless of seasons.

VI. RELATED WORK

In this section, we review related works on scalable tensor
decompositions and coupled matrix-tensor factorization.

A. Scalable Tensor decompositions

Tensor decomposition is an important tensor analysis tool
for a variety of real datasets such as network traffic data [21],
knowledge bases [22], web data [23], and many others [24],
[25], [26]. As the size of real-world tensors becomes very
large, scalable tensor decomposition has been in high demand.

There have been works on scalable tensor decomposi-
tions using distributed platforms. GigaTensor [9] is the first

work that utilizes the MAPREDUCE framework for large-scale
PARAFAC decomposition. Jeon et al. [14] propose HaTen2
that improves on GigaTensor. HaTen2 unifies Tucker and
PARAFAC decompositions into a general framework. Beutel
et al. [7] propose FlexiFaCT, a flexible tensor decomposi-
tion method based on distributed stochastic gradient descent.
FlexiFaCT supports various types of decompositions such as
matrix decomposition, PARAFAC decomposition, and coupled
matrix-tensor factorization. Shin et al. [19] propose distributed
tensor decomposition methods for tensors with missing entries.

In addition, there have been works for various tensor
decomposition methods. In [27], Bro et al. use Tucker de-
composition to boost the performance of PARAFAC decom-
position by compressing a tensor. An alternative approach
called DBN [28] uses relational algebra to break down a tensor
into smaller tensors, with relational decomposition to achieve
scalability. ParCube [29] is an effective sampling method for
PARAFAC decomposition. Erdos and Miettinen introduce a
scalable boolean tensor decomposition using random walks
[30]. With regard to scalable Tucker decomposition, Kolda et
al. [31] propose MET, a memory-efficient Tucker decomposi-
tion method running on Matlab.

B. Coupled matrix-tensor factorization

Acar et al. [6] propose CMTF-OPT, a first-order optimiza-
tion algorithm for coupled matrix-tensor factorization on a sin-
gle machine. The FlexiFaCT method described above supports
coupled matrix-tensor factorization as well. Papalexakis et al.
propose Turbo-SMT, an effective sampling and merge method
for ALS and CMTF-OPT [12].

VII. CONCLUSION

We propose SCOUT, a distributed scalable coupled matrix-
tensor factorization algorithm running on MAPREDUCE plat-
form. By reusing intermediate data, carefully ordering com-
putation, and transforming input matrix, SCOUT significantly
decreases the intermediate data and floating point operations.
SCOUT shows up to 100× larger scalability than existing
methods, and linear scalability for order and machines. We
also discover interesting hidden patterns by applying SCOUT
on real-world coupled matrix-tensor datasets.

Future work includes extending the work to Tucker-based
coupled matrix-tensor factorization.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Ko-
rea(NRF) funded by the Ministry of Science, ICT and Future
Planning(MSIP) (No. NRF-2015R1C1A2A01055739, and No.
2013R1A1A1064409). This work was also supported by the
IT R&D program of MSIP/IITP [10044970, Development of
Core Technology for Human-like Self-taught Learning based
on Symbolic Approach].

REFERENCES

[1] Y. Lin, J. Sun, P. Castro, R. B. Konuru, H. Sundaram, and A. Kel-
liher, “Metafac: community discovery via relational hypergraph fac-
torization,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France,
June 28 - July 1, 2009, 2009.

821

[2] V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang, “Collaborative
filtering meets mobile recommendation: A user-centered approach,”
in AAAI 2010. Association for Computing Machinery, Inc., July
2010. [Online]. Available: http://research.microsoft.com/apps/pubs/
default.aspx?id=143146

[3] A. Banerjee, S. Basu, and S. Merugu, “Multi-way clustering on relation
graphs.” in SDM. SIAM, 2007.

[4] A. Smilde, J. A. Westerhuis, and R. Boque., “Multiway multiblock
component and covariates regression models,” in J. Chemometrics,
2000.

[5] B. Ermis, E. Acar, and A. T. Cemgil, “Link prediction via generalized
coupled tensor factorisation,” CoRR, vol. abs/1208.6231, 2012.

[6] E. Acar, T. G. Kolda, and D. M. Dunlavy, “All-at-once optimization for
coupled matrix and tensor factorizations,” in MLG’11: Proceedings of
Mining and Learning with Graphs, August 2011.

[7] A. Beutel, A. Kumar, E. E. Papalexakis, P. P. Talukdar, C. Faloutsos,
and E. P. Xing, “Flexifact: Scalable flexible factorization of coupled
tensors on hadoop,” in SDM, 2014.

[8] B. W. Bader and T. G. Kolda, “Efficient matlab computations with
sparse and factored tensors,” SIAM JOURNAL ON SCIENTIFIC COM-
PUTING, vol. 30, no. 1, pp. 205–231, 2007.

[9] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
scaling tensor analysis up by 100 times - algorithms and discoveries,”
in KDD, 2012.

[10] E. E. Papalexakis, U. Kang, C. Faloutsos, N. D. Sidiropoulos,
and A. Harpale, “Large scale tensor decompositions: Algorithmic
developments and applications,” IEEE Data Eng. Bull., vol. 36, no. 3,
pp. 59–66, 2013. [Online]. Available: http://sites.computer.org/debull/
A13sept/p59.pdf

[11] L. Sael, I. Jeon, and U. Kang, “Scalable tensor mining,” Big Data
Research, vol. 2, no. 2, pp. 82 – 86, 2015, visions on Big Data.

[12] E. E. Papalexakis, C. Faloutsos, T. M. Mitchell, P. P. Talukdar, N. D.
Sidiropoulos, and B. Murphy, “Turbo-smt: Accelerating coupled sparse
matrix-tensor factorizations by 200x,” in SDM, 2014.

[13] R. Harshman, “Foundations of the parafac procedure: model and con-
ditions for an explanatory multi-mode factor analysis,” UCLA working
papers in phonetics, vol. 16, 1970.

[14] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2: Billion-
scale tensor decompositions,” in IEEE International Conference on
Data Engineering (ICDE), 2015.

[15] “Gnu octave,” https://www.gnu.org/software/octave/.
[16] “Microsoft academic graph dataset,”

https://academicgraph.blob.core.windows.net/graph-2015-08-
20/index.html.

[17] “Movielens dataset,” http://grouplens.org/datasets/movielens/.
[18] “Yelp dataset,” http://www.yelp.com/dataset challenge/.
[19] K. Shin and U. Kang, “Distributed methods for high-dimensional and

large-scale tensor factorization,” in ICDM, 2014.
[20] T. Franz, A. Schultz, S. Sizov, and S. Staab, “Triplerank: Ranking

semantic web data by tensor decomposition,” in In ISWC, 2009.
[21] K. Maruhashi, F. Guo, and C. Faloutsos, “Multiaspectforensics: Pattern

mining on large-scale heterogeneous networks with tensor analysis,” in
International Conference on Advances in Social Networks Analysis and
Mining, ASONAM 2011, Kaohsiung, Taiwan, 25-27 July 2011, 2011.

[22] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M.
Mitchell, “Toward an architecture for never-ending language learning,”
in AAAI, 2010.

[23] T. Kolda and B. Bader, “The tophits model for higher-order web link
analysis,” in Workshop on Link Analysis, Counterterrorism and Security,
2006.

[24] J. Sun, S. Papadimitriou, and P. S. Yu, “Window-based tensor analysis
on high-dimensional and multi-aspect streams,” in Proceedings of the
6th IEEE International Conference on Data Mining (ICDM 2006), 18-
22 December 2006, Hong Kong, China, 2006.

[25] T. G. Kolda, “Scalable tensor decompositions for multi-aspect data
mining,” in ICDM, 2008.

[26] N. Sidiropoulos, G. Giannakis, and R. Bro., “Blind parafac receivers for
ds-cdma systems,” in Signal Processing, IEEE Transactions on, 2000.

[27] R. Bro, N. Sidiropoulos, and G. Giannakis, “A fast least squares algo-
rithm for separating trilinear mixtures,” in Int. Workshop Independent
Component and Blind Signal Separation Anal, 1999.

[28] M. Kim and K. S. Candan, “Decomposition-by-normalization (DBN):
leveraging approximate functional dependencies for efficient tensor
decomposition,” in 21st ACM International Conference on Information
and Knowledge Management, CIKM’12, Maui, HI, USA, October 29 -
November 02, 2012, 2012.

[29] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube:
Sparse parallelizable tensor decompositions,” in ECML/PKDD (1),
2012, pp. 521–536.

[30] D. Erdös and P. Miettinen, “Scalable boolean tensor factorizations using
random walks,” CoRR, 2013.

[31] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-
aspect data mining,” in ICDM 2008: Proceedings of the 8th IEEE
International Conference on Data Mining, 2008, pp. 363–372.

822

